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Abstract—Malicious URL detection has drawn a significant
research attention in recent years. It is helpful if we can simply
use the URL string to make precursory judgment about how
dangerous a website is. By doing that, we can save efforts on the
website content analysis and bandwidth for content retrieval. We
propose a detection method that is based on an estimation of the
conditional Kolmogorov complexity of URL strings. To overcome
the incomputability of Kolmogorov complexity, we adopt a
compression method for its approximation, called conditional
Kolmogorov measure. As a single significant feature for detection,
we can achieve a decent performance that can not be achieved by
any other single feature that we know. Moreover, the proposed
Kolmogorov measure can work together with other features for
a successful detection. The experiment has been conducted using
a private dataset from a commercial company which can collect
more than one million unclassified URLs in a typical hour. On
average, the proposed measure can process such hourly data in
less than a few minutes.

Index Terms—blacklist, compression, entropy, Kolmogorov
complexity, malicious URL.

I. INTRODUCTION

The Internet environment contains a large amount of mali-

cious websites. Understanding content of the malicious sites

can help us to classify the sites as one that is designed

with bad intention and make appropriate defensive actions

afterwards. However, the content analysis usually takes a lot

of computation efforts not to mention the bandwidth load

to retrieve the content before the analysis. In this work, we

propose a website classification method that can automatically

detect malicious sites from benign ones based on only the URL

strings.

Normally the URLs are made by website designers. Each

designer uses his/her own preference to select a domain name,

build the file structure under the domain name, and give name

to the file. The URL of the website may have a pattern that

belongs to a particular designer, but that is not quite the

case for malicious websites. Usually, malicious websites are

generated by pre-defined rules or procedures and by that, tons

of URLs are produced in a short period of time. Based on the

different naming procedures for benign and malicious sites, we

should be able to find the difference between the two groups.

That is the goal of this work, to detect malicious websites by

understanding the patterns of URLs.

TABLE I
DOMAIN NAMES AND FILENAMES WITH THE TOP FIVE FREQUENCIES. THE

NOTATION “?” INDICATES A WILDCARD CHARACTER. SOME PATTERNS

ARE COMMON IN BOTH GROUPS.

Rank
Domain name Filename

Malicious Benign Malicious Benign
1 ?.bjcandy.com tracker.metrotorrents.info bad?.exe favicon.ico
2 keeplinkslife.com 122.208.189.10 index1.php din.aspx
3 www.imdvd.net web.fc2.com favicon.ico index.php
4 www.jsccia.org sanguo.pk238.com index.php announce.php
5 first.vs nht-2.extreme-dm.com sapdf0.pdf index.html

Tables I shows1 some common keywords in malicious URLs

and benign URLs.2 A simple and one of the traditional detec-

tion methods is to investigate keywords existed in malicious

group or benign group and make a judgment based on a so-

called blacklist/whitelist method. It is not always effective. For

instance, we do see that the malicious and benign groups share

some common patterns frequently, such as we observe “index”

with high frequencies in both of the malicious and benign

groups (on the right-hand side of Table I).

In this work, we propose a Kolmogorov complexity-based

method for malicious URL detection. Some welcome features

of the proposed method include:

1) The proposed method can successfully separate malicious

URLs from benign ones.

2) The proposed method needs no prior understanding about

the URL structure, such as how to parse the URL into

separated parts like domain name, path, etc.

3) The proposed method can work independently as a single

measure; on the other hand, it can also work with other

useful features to achieve an even better performance.

4) The proposed method has efficient computation, such as

it can finish the computation for a million URLs in a few

minutes.

Before we go on to introduce the proposed method, we

discuss some previous works on malicious URL detection in

Section II; after that, we give more details about the datasets

that we use in this work in Section III. In Section IV, we

1Be careful of browsing some of the websites as they may give unexpected
or unwanted result.

2The statistics is based on one of our datasets, further discussed in
Section III.

2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4880-7/12 $26.00 © 2012 IEEE

DOI 10.1109/WI-IAT.2012.258

380



detail the proposed method. The experiment result is shown

in Section V and in Section VI, we conclude our presentation.

II. PREVIOUS WORK

Malicious URL detection has received major attention in

recent years. It is mainly due to the fact that the number

websites grows rapidly and the Web browsing for information

finding becomes popular in the last decade.

The malicious URL detection can roughly divided into two

groups, depending on whether the content information is used

in the detection. The detection based on content analysis is

usually more reliable because more information can help to

make a better decision. On the other hand, the detection

without using the content information can save a significant

bandwidth. It says that eight billions of URLs may need to

be analyzed per day for a company that focuses on malicious

URL detection [1].

One of the most traditional approaches for malicious URL

detection is based on the blacklist method. The major draw-

back of the blacklist method is its weakness for generalization.

Ma et al. [2], [3] started to design a URL classifier to identify

malicious URLs by examining lexical features of the URLs

and other features of the sites. In their work, a URL was par-

titioned into four parts which are “domain”, “path”, “filename”

and “argument”; and then a classification method will select

the lexical features from the groups of malicious and benign

URLs. Some lexical features include the number of dot, or how

the delimiters such as “/”, “?”, etc are used in the path. Some

other non-lexical features were also included in their feature

set, such as the WHOIS, TTL information. Following Ma et

al., PhishDef proposed by Le et al. [4] discussed another set of

features for URL classification. One of the differences between

Ma’s method and PhishDef is that PhishDef can deal with URL

obfuscation that are frequently used by attackers; moreover,

PhishDef emphasized its ability to deal with noise data. Using

some heuristics on lexical features as well as an approximate

matching algorithm, PhishNet [5] attempted to detect phishing

sites. We want to emphasize that our proposed method needs

no particular understanding of URL structure. That makes the

method easy to implement and robust to the situation when

the understanding of URL structure is not correct, such as the

case of short URL (e.g., http://tinyurl.com/).

III. DATA DESCRIPTION

In this work, we use two datasets for the evaluation of the

proposed method. The first dataset is obtained from Trend

Micro Incorporated3, denoted by DTM that collects daily

URLs that are submitted by the company’s clients around

the world. We test our proposed detection method on such a

real world data to demonstrate that the proposed method can

indeed deal with real world problems with commercial level

efficiency. On the other hand, to compare with other existing

methods, we also collect some data from public domains.

We have the malicious URLs that were collected from the

3The dataset is belonged to Trend Micro.

publicly accessible PhishTank [6]; and the benign URLs that

were collected from Yahoo [7]. This dataset is denoted by

DP+Y . The complete statistics about the datasets are shown

in Table II.

A. Company Data Set

The Trend Micro company collects the URLs that are

submitted by their clients around the world based on the

clients’ browsing experience. Once some clients do not have

confidence on browsing some websites, they may choose

to upload the URLs to the company’s server. Typically, the

company receives around one million such URLs per hour

on average. It is much larger than any datasets that we can

collect from public domains. Once the company receives the

URLs, they test the URLs based on several automatic content

analysis measures, sometimes also with a small amount of

human efforts to make judgment about whether the URLs

belong to malicious ones or benign ones. There is no reason

to believe that such labeling procedure can produce 100%-

correct labels; but it should give a much more accurate result

than that can be obtained from non-content-based measures.

The dataset is a very unbalanced dataset which has the ratio

of malicious URLs to benign URLs less than 1 to 10000 on

average. In total, we selected URLs that were received in 10

days (from April 7 to April 16, 2011), and then we divided

the datasets into different groups on a daily basis. Afterwards,

we use the first-day data (April 7) to build the first model;

then, we continually to use the previous model to test the data

on the next day, from April 8 to April 16 for our evaluation.

B. Open Source Data Set

We also collect URLs from public domains that consist of

malicious URLs from PhishTank [6] and Yahoo directory [7].

The website PhishTank is a site for Web security community

where anyone can submit suspicious URLs to the site. After

that, the website checks the URLs by at least two other

members. If the website confirms that a submitted URL is

malicious they will add the URL to the PhishTank database.

The database is available in multiple formats and updated

hourly. We collected our data during the period from June,

2010 to February, 2012. The dataset consists of 4000 verified

malicious URLs (phishing sites, or the sites that contain known

attacks, suspicious content, etc). We also collected an equal-

size (4000) benign URLs from Yahoo directory [7].

IV. DETECTION METHOD

Given a finite-length string s, we can use Kolmogorov

complexity to describe its complexity. In this work, we fo-

cus on the URL string which includes domain name, path,

filename, and some arguments, etc as described before. Given

a URL, we would like to judge whether the URL belongs

to a malicious one or benign one, based on its Kolmogorov

measure. Moreover, the proposed Kolmogorov measure can be

combined with other features to form a powerful detector for

malicious URLs.
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TABLE II
DATA STATISTICS

Dataset # of Benign URLs # of Malicious URLs Total Malicious rate Period
DTM : Trend Micro 261,426,377 20,280 261,446,657 0.00776% April 7 – April 16, 2011
DP+Y : PhishTank + Yahoo 4,000 4,000 8,000 50% June, 2010 – Feb. 2012

A. Kolmogorov complexity

The Kolmogorov complexity (or called Kolmogorov en-

tropy, algorithmic entropy) [8] is one of the best measure

to describe the complexity/entropy of finite objects. We can

define the Kolmogorov complexity of a string s as the length

of the smallest program (measured in bits) that can produce

the string s, that is:

K(s) = min
p
{|p| : U(p) = s} , (1)

where U is the universal Turing machine and |p| measures

the length of the program with program number p. Between

different Turing machines their program lengths are up to a

constant difference which is independent from the object that

the program produces. Intuitively, we expect that wring a small

program that produces a regular 2500-fold repetitive string

“0001000100010001...0001” should be easier than writing a

program that produces a string that encodes a series of coin-

flipping trials.

We shall also define the conditional Kolmogorov complexity

of a string t, given the information of another string s for free

as follows:

K(t | s) = min
p
{|p| : U(p, s) = t} . (2)

Here the universal Turing machine U(p, s) simulates the

program with program number p and takes the input s. That is,

to produce string t, we do not need to spend effort (storage in

the program) on describing s because s has a separate (input)

storage to keep its content.

The Kolmogorov complexity and Shannon’s entropy [9] are

known to share some common properties. For two random

variables X and Y , we have

H(X,Y ) = H(Y,X) , (3)

H(X,Y ) = H(X) +H(Y |X) , (4)

where H(X) indicates the Shannon’s entropy of X and

H(X,Y ) and H(Y |X) indicate the joint entropy and con-

ditional entropy of X and Y respectively. On the other hand,

given two strings s and t, we have

K(st) ∼ K(ts) , (5)

K(st) ∼ K(s) +K(t | s) , (6)

where st indicates the string concatenation of two strings

s and t, the notation ∼ simply means that two values are

equal, up to a constant that is independent from (any of) the

discussed values for Eq. 5 and up to a logarithm term for Eq. 6.

For the first formula, intuitively, we say that the programs to

produce st and ts should have similar program lengths. The

only thing that can make the difference between producing

st and ts is how we can take advantage of the regularity in

the concatenation point of st or ts. For Eq. 6, we say that

producing st is very similar to the case where we write a

program to produce s, and then write another program that

can produce t, but given the information of s for free, and

combine both programs together in the end.

B. Kolmogorov Complexity Estimation by Compression Meth-
ods

The Kolmogorov complexity is not computable in general

(e.g., by the Gödel’s incompleteness theorem or by [8]). We

can use compression methods to acquire an approximation or

an upper bound of Kolmogorov complexity. Given a finite

URL string s and a compression method, we approximate the

Kolmogorov complexity K(s) of the string s by the length

g(s) of the compressed version of s.

We would also like to estimate the joint Kolmogorov

complexity and conditional Kolmogorov complexity. To ap-

proximate the Kolmogorov complexity of st, we measure the

length g(st) of the compressed string of st. On the other

hand, to approximate the conditional Kolmogorov complexity

of K(s |D), we measure the length difference between the

compressed string of Ds and the compressed string of D. In

math, we write:

g(st) ∼ K(st) , (7)

g(s | D) ≡ g(Ds)− g(D)

∼ K(Ds)−K(D) ∼ K(s | D) . (8)

The last approximation in Eq. 8 is simply derived from Eq. 6.

Some intuition behind such computation is that we expect a

small quantity of g(s | D) = g(Ds) − g(D) if s has similar

patterns to some patterns in D. Usually, we expect a positive

quantity or a very large quantity once s has very different

patterns from all the patterns in D. Usually we have g(s) ≥
g(s | D) ≥ 0.

Finally, we need to choose a compression method as the

candidate to approximate Kolmogorov complexity. Ideally, the

better the compression ratio is, the better we can approximate

Kolmogorov complexity. But a method with better compres-

sion ratio may indicate a slower computation in finding the

common patterns for substitutions. In this work, we write a

compressor based on a well-known algorithm Deflate [10]

which is a variant of the classical LZ77 [11] proposed by

Lempel and Ziv in 1977. We also explore another similar

algorithm called LZ78 [12]. One of the major differences

between LZ77 and LZ78 is that LZ78 can compress a string

given a known dictionary stored on the side, so called a warm
start zipper whereas LZ77 is a cold start version that always
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compresses from an empty dictionary. LZ77 and LZ78 are both

lossless compression methods; also, both require low memory

and are efficient in both encoding and decoding4. The bottom

line of choosing an appropriate compression method is that

we need to finish the compression faster than the content-

based website analyzers, and it is better that we can finish the

compression and the subsequent detection task in real time.

C. URL Classification Based on Kolmogorov measure

To classify a URL into a malicious one or not, we have

two databases that keep all the URLs that we have seen in

the history: one for the malicious part, denoted by Dm, and

the other for the benign part, denoted by Db. The scenario

is, if we have a newly submitted URL s from a client, we

would like to judge whether it is malicious or not. To answer

that, we compare the URL s to Dm and Db in turn to see

which one includes patterns closer to the patterns in s. We

compute g(s | Dm) = g(Dms) − g(Dm) and g(s | Db) =
g(Dbs) − g(Db) to find which one is smaller than the other.

Intuitively, if g(s | Dm) is smaller than g(s | Db) it means that

s is closer to the malicious group and vice versa. To consider

different sizes of databases Dm and Db, we need an additional

normalization step5. We define the Kolmogorov complexity-

based measure for malicious URL detection as

MDmDb
(s) =

g(s | Dm)− g(s | Db)

g(s | Dm) + g(s | Db)
. (9)

If the measure M outputs a negative number, we predict s to

be a malicious URL; otherwise, we predict s to be a benign

one. Algorithm 1 shows the detailed steps for the proposed

malicious URL detection method.

Algorithm 1: Kolmogorov-based malicious URL detection

Input: a string s, a compressor C
Output: a binary answer y ∈ {malicious, benign}

1 begin
2 Concatenate Dm and s; also, Db and s to form new

strings Dms and Dbs respectively ;

3 Compress Dms and Dbs by C ;

4 Measure the length of the compressed results,

denoted by g(Dms) and g(Dbs) for the malicious

part and benign part respectively ;

5 let g(s | Dm) = g(Dms)− g(Dm) and

g(s | Db) = g(Dbs)− g(Db) ;

6 Compute MDmDb
(s) = g(s|Dm)−g(s|Db)

g(s|Dm)+g(s|Db)
;

7 if MDmDb
(s) ≤ 0 then

8 return “malicious” ;

9 else
10 return “benign” ;

11 end
12 end

4Efficient encoding is more important than efficient decoding in this case.
5It is not necessary if we just need to know whether the result is positive

or negative. But it is helpful if we want to know “how malicious” a URL is.

We can compute g(Dm) and g(Db) off-line to save some

efforts. For the dataset DTM from the Trend Micro company,

Dm and Db are collected based on the labels of content-based

analysis. For the dataset DP+Y from public domains, Dm is

collected from PhishTank and Db is collected from Yahoo

directory. Figure 2 shows the distributions of Kolmogorov

measure for the public domain dataset.6 The Kolmogorov

measure given by Eq. 9 can indeed separate malicious URLs

from benign ones.

D. Combined with Other Methods

We can enhance the detection performance even further

by combining the Kolmogorov measure with other detection

methods to form a complete malicious URL detector. The

improvement can be done based on two approaches. First,

we should look for more features that can also give a good

separation between malicious and benign URLs. Usually, the

more diverse the features are, the better detection performance

we can achieve. Based on a collected feature set, second, we

can use a good classification method to effectively combine

all the features for malicious URL detection. We have tried

several different types of features to separate data of different

properties, further discussed below. Afterwards, we utilize

Support Vector Machines (SVMs) [13] as our classifier for

the detection.

1) Huffman Coding: Some URLs may have common pat-

terns no matter they are malicious or not. For instance, many

URLs share common domain names, such as Google, Yahoo,

Facebook or other public websites for blogging and malicious

components may exist in those public websites, too. In this

case, we tend not to trust a domain once we have many

malicious URLs reported for that domain, even we still have

the same domain, but a smaller number existed in the benign

database.

If we are given three strings s1 = “ABCXXX”, s2 =
“ABCY Y ABC” and t = “ABC”, the compressions on

both s1t and on s2t shall give us good compression ratio7

because they all share the common pattern “ABC”. However,

we would like to say that the string t is closer to the string

s2 because we observe higher frequency of common pattern

“ABC” in s2 rather than in s1. We look for a compression

method that can give us better compression for the string s2t
rather than the string s1t.

Huffman coding is known to use short codes to encode

frequent items. Utilizing a compression method that is in co-

operated with Huffman coding, we shall give a short outcome

for a compression on the string s2t rather than on the string

s1t. The compression algorithm Deflate [10] takes Huffman

coding into account for its compression; therefore, we expect

a relatively short Deflate code for a string that has frequent

patterns in it.

6It will be discussed further in Section V.
7We discuss simple short strings only for illustration. Readers should not

be confused by the situation that short strings may not be compressed well
by some common compressors.
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TABLE III
EXPERIMENTAL SETTINGS

Training set Test set

DTM
URLs collected from day 1 to day n
or collected in day n only

URLs collected
in day n+ 1

DP+Y

2,000 malicious URLs in the period
of June, 2010 to Feb., 2012 from
PhishTank plus 2,000 from Yahoo

The rest of 4,000

2) Lexical Features and Statistical Features: We can con-

sider some other features that can help us to detect malicious

URLs. Some candidates are country code, with or without a

particular file extension like “exe”, etc. They belong to a group

called lexical features. More examples of lexical features are

those that were used in PhishDef [4]. Some other feature

candidates include statistical features like the length of URL,

the frequency of particular characters, etc. We should add some

additional features to improve the performance of malicious

URL detection.

3) Support Vector Machines: To effectively combine var-

ious features for malicious URL detection, we choose SVM

to classify URLs into malicious or benign ones. We adopt

LIBLINEAR developed by Fan et al. [14] for the classification

task.

V. EXPERIMENTS

We conduct two series of experiments to evaluate how

effective and how efficient the proposed method is. The first

series uses only the Kolmogorov measure to detect malicious

URLs. The goal of this series is to show how Kolmogorov

measure can catch the different patterns between malicious

and benign URLs. In the second series of experiments, we

combine Kolmogorov measure with other features under the

classification framework of SVM. The goal of the series is to

demonstrate the Kolmogorov measure can help malicious URL

detection in an “orthogonal” manner; that is, the Kolmogorov

measure can give a large marginal help to other features for

malicious URL detection.

We work on both datasets, the private dataset from Trend

Micro DTM and the public domain dataset DP+Y . We use the

private dataset to show the proposed method can indeed detect

malicious URLs that are collected from the real world. We

calculate Detection Rate and Missed Malicious Rate (defined

in Eq. 10) for the evaluation. We also have the constraint that

the proposed method must be efficient enough to follow the

company’s regulation, such as finishing filtering a million of

URLs in one hour. Another dataset for evaluation is the public

dataset DP+Y . The goal to work on this dataset is to compare

the proposed method to other methods that were proposed

before. The complete datasets are described in Table II. Given

the data, we would like to separate them into the training part

and the test part, as shown in Table III for the evaluation.

For the dataset DTM , the prediction is operated in an online

manner. We build a model based on the last n-day’s data and

use the model to predict the data coming for the next day. For

the public dataset DP+Y , we randomly permute the data into

two equal parts and use one half of the data to build a model

and use the model to predict the rest of the data.

A. Kolmogorov Measure Based Detection

1) The Data from Trend Micro: In this part of experiments,

we evaluate the proposed measure on the dataset DTM that

was obtained from the Trend Micro company. The dataset

contains around one million URLs per hour on average. Based

on the company’s requirement, we would like to detect as

many malicious URLs as possible, with as few false positives

as possible. We compute the Detection Rate (DR) and the

Missed Malicious Rate (MMR) as follows:

DR =
TP + FP

TP + FP + TN + FN
,

MMR =
FN

TP + FN
, (10)

where TP, FP, TN and FN indicate true positives, false
positives, true negatives and false negatives respectively; and

the positives indicate malicious URLs in this work. Of course,

while there is a trade-off, we would like both of DR and MMR

to be as low as possible. A low DR gives a small amount

of data for further analysis from a second or more detectors,

possibly relying on content analysis; and a low MMR indicates

that the detection method is sensitive enough to detect most

malicious URLs. The company’s requirement is to have both

DR and MMR under 25%. For the computation efficiency, the

lowest requirement for the proposed method is to be able to

analyze all URLs in real time. It means that the one-hour data

(one million of them) should be processed and given prediction

completely in one hour.

First, we test the proposed Kolmogorov measure in an

online manner. Because malicious URLs are significantly

fewer than benign URLs, to avoid unbalanced learning, we

sample only 1/600 of the benign URLs to make both parts in

a closer size. Figure 1 shows the hourly DR and MMR results.

We use one-day data to build the model and test the model

on the data of the next day and so on. We observe that both

DR and MMR are basically below 25%.8 The DR and MMR

seem to have a periodic cycle every 24 hours. Both increase

significantly during the night period. The interpretation is that

during the night time most people are off from their work;

therefore, reported URLs are less likely to be the common

ones and more likely to be malicious.

Below we further discuss some different settings of

Kolmogorov-based detection and their results. First, we con-

sider using different training sets, from one to four days of

data to build the model. As expected, the four-day model

gives us the best performance, as shown in Table IV. In the

compression of computing Kolmogorov measure, we can use

different size of dictionary buffer to build different training

models. In principle, a larger size of dictionary buffer produces

better compression result; however, less efficient, as shown in

Table V.

8Note that we use different scales for DR and MMR.
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TABLE IV
ONLINE PREDICTION ON THE DATASET DTM . THE FOUR-DAY MODEL GIVES THE BEST RESULT (BOTH DR AND MMR), WHILE THE ONE-DAY MODEL

GIVES THE MOST EFFICIENT RESULT (AROUND SEVEN MINUTES).

Date
1-day training 2-day training 3-day training 4-day training
DR MMR DR MMR DR MMR DR MMR

Apr. 8 20.97% 22.06% - - - - - -
Apr. 9 19.94% 17.65% 18.53% 14.50% - - - -
Apr. 10 20.73% 19.76% 18.33% 16.41% 17.65% 14.20% - -
Apr. 11 21.80% 21.63% 19.50% 15.84% 19.02% 13.91% 17.54% 13.93%
Apr. 12 19.54% 25.36% 18.11% 17.25% 17.25% 13.57% 15.74% 13.05%
Apr. 13 20.01% 21.47% 18.22% 15.14% 16.78% 14.16% 15.59% 12.70%
Apr. 14 21.31% 20.34% 18.84% 15.59% 17.40% 12.86% 16.48% 11.99%
Apr. 15 22.90% 22.05% 20.45% 16.57% 17.89% 15.34% 17.18% 13.04%
Apr. 16 21.96% 17.65% 20.45% 12.79% 19.56% 9.85% 17.88% 8.59%
Avg. Perf. 21.02% 20.88% 19.05% 15.51% 17.94% 13.41% 16.74% 12.22%
Avg. time 433 (s) 557 (s) 628 (s) 660 (s)

TABLE V
PERFORMANCE ON THE DATASET DTM IN DIFFERENT SIZE OF DICTIONARY BUFFER.

Buffer size
1-day training 2-day training 3-day training 4-day training

DR MMR Time(s) DR MMR Time(s) DR MMR Time(s) DR MMR Time(s)
Dict len. 2-5 25.29% 18.81% 297 24.42% 14.02% 597 24.86% 12.22% 602 22.55% 12.29% 650
Dict len. 2-6 22.71% 20.19% 335 21.49% 15.14% 571 20.53% 12.98% 605 20.06% 11.57% 653
Dict len. 2-7 21.08% 20.80% 377 19.53% 15.46% 582 18.13% 13.69% 584 17.70% 12.45% 675
Dict len. 2-8 21.02% 20.88% 433 19.05% 15.51% 557 17.94% 13.41% 628 16.74% 12.22% 660
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Fig. 1. (a) DR vs. MMR in hourly detection. We observe a weekly cycle
for both measures. The reported URLs during the night time are more likely
to be malicious simply because people browsing the well-known URLs less
frequently during the night period (roughly from 8pm to 1am). (b) DR vs.
MMR after the tuning between DR and MMR.

2) The Data from PhishTank+Yahoo: We also test the

proposed measure on the public dataset DP+Y , which consists

of data from PhishTank and Yahoo directory. Given the dataset,

we demonstrate how the Kolmogorov measure can help us

separate malicious URLs from benign ones.

Different from the private dataset DTM , this dataset has
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Fig. 2. The distribution of the Kolmogorov measure in Eq. 9 on the training
data. The zero value appears to be a good cut point between malicious URLs
(on the left) and benign URLs (on the right).

no clear time information. The general approach to compute

Kolmogorov measure in Eq. 9 is to randomly select appro-

priate databases Dm and Db for malicious and benign groups

respectively. We randomly divide the dataset into 10 groups

where in each group, we have equal number of malicious

and benign URLs. Afterwards, we use nine groups to build

our databases Dm and Db and use them to evaluate the

Kolmogorov measure. If we need to separate training and

testing processes, we can divide the dataset into the training

set and test set before we evaluate the Kolmogorov measure.

Figure 2 shows the distribution of Kolmogorov measure

on the training set. We separate the dataset into two parts,

4000 URLs in each group for the latter use of classification

training and testing; and in each group we further divide it

into 10 batches (200 malicious URLs and 200 benign URLs)

to compute the Kolmogorov measure. The separation given by

Kolmogorov measure for the training set is shown in Figure 2.

It demonstrates how informative Kolmogorov measure is to

separate malicious URLs from benign ones.
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B. Combine Kolmogorov Measure and Other Features

The goal of this experiment is to show that the

proposed Kolmogorov measure can successfully improve

the performance if we add the measure as an additional

feature to a feature set without the measure. We take the

feature set that was used in PhishDef [4] as the base

feature set for comparison. There are four types of detection

methods that we can consider for the comparison, listed below:

1) Kolmogorov measure only,

2) PhishDef features only classification,

3) PhishDef features and Kolmogorov measure combined

classification, and

4) two-step classification using PhishDef features after a

pre-screening by the Kolmogorov measure.

In these experiments, we would like to see whether the

additional Kolmogorov measure can indeed help to detect

malicious URLs in higher accuracy. The detail PhishDef

features9 should be referred to [4]. For each classification, we

use a linear SVM method called LIBLINEAR [14] to train the

model. The box constraint C is set to 25 at all times. Below

we discuss each of the detection methods in more details.

The first method is simply the one that we check whether or

not the Kolmogorov measure is negative to decide whether or

not a URL belongs to a malicious one. We use the Kolmogorov

measure that was used to generate Fig. 2 for the judgment.

The second method uses only the PhishDef features for

classification. We repeat the feature collection procedure that

was used to obtain the PhishDef’s features in [4] to detect

malicious URLs.

The third method uses the PhishDef features as well as the

Kolmogorov measure (one more than the second method) for

the classification.

The last method uses also both of the PhishDef features and

the Kolmogorov measure, but based on a two-step approach for

the detection. In the first step, we use the Kolmogorov measure

to filter some “easy classified” URLs into the malicious

group or the benign group; then in the second step, we use

LIBLINEAR classifier on the subset of data that we do have

enough confidence from the Kolmogorov measure.

Based on the distribution in Figure 2, we decide two

thresholds to filter out some easy-classified URLs. We choose

the thresholds so that we can control the malicious group to

have larger than 99% accuracy; also, to have the accuracy

larger than 98% in the benign group. The choice leads to

the following rules: we call URLs that produce Kolmogorov

measure lower than −0.057 as malicious ones and URLs that

have the measure higher than 0.069 as benign ones. If a URL

has the Kolmogorov measure between −0.057 and 0.069, we

train a LIBLINEAR classifier to decide its final label. In this

part, we need to help of PhishDef features. The complete

classification result is shown in Table VI.

9Some of the PhishDef features are not used in this work, such as the
WHOIS information. We intend not to use those that need information beyond
the URL string itself.

TABLE VI
THE TWO-STEP CLASSIFICATION RESULT BASED ON THE KOLMOGOROV

MEASURE AND THE PHISHDEF FEATURES, AND THE RULES USED FOR THE

KOLMOGOROV PRE-SCREENING.

Threshold < -0.057 > 0.069
Correct Error Correct Error Correct Error

Malicious (Kol.) 1,319 49 – – – –
Benign (Kol.) – – – – 1,200 19
Malicious (SVM) – – 544 88 – –
Benign (SVM) – – 738 43 – –

TABLE VII
THE COMPARISON RESULT OF FOUR DIFFERENT MODELS. THE ONE WITH

THE KOLMOGOROV MEASURE PERFORMS BETTER THAN THE ONE

WITHOUT THE KOLMOGOROV MEASURE; AND THE TWO-STEP METHOD

PERFORMS THE BEST.

Model TP FN TN FP Err. Rate
Kol. measure 1,726 274 1,859 141 10.375%
PhishDef features only 1,839 161 1,908 92 6.325%
PhishDef+Kol. measure 1,953 47 1,824 176 5.575%
2-step PhishDef+Kol. measure 1,938 62 1,863 137 4.975%

To compare the four detection methods, we find out that

the Kolmogorov measure can improve the performance no

matter it is done by a SVM classification given both of the

PhishDef features and the Kolmogorov measure (from 6.325%
to 5.575%), or by a two-step approach (from 6.325% to

4.975%). The two-step approach, using Kolmogorov measure

for pre-screening first, followed by a SVM classification gives

the best performance among the four methods.

VI. CONCLUSION

We proposed a Kolmogorov complexity-based measure for

malicious URL detection. The measure is computed based

on the compression algorithms LZ77 and LZ78. Even the

method is very simple in its concept, the experiments on

both a private and a public domain datasets show that the

proposed measure can indeed give good separation between

malicious URLs and benign URLs and can operate in real

time. The result on the commercial dataset gives us confidence

that the proposed method can directly be applied to real

world situations. On the other hand, we also test the proposed

method on a public domain dataset to show how the proposed

method can perform better than previously proposed method.

We can also combine the proposed measure with other useful

features, under a classification framework to give an even

better detection performance.
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